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A Scaling Method for Priorities in Hierarchical Structures 

THOMAS L. SAATY 

University of Pmmsylvania, Wharton School, Philadelphia, Pennsylvania 19174 

The purpose of this paper is to investigate a method of scaling ratios using the principal 
eigenvector of a positive pairwise comparison matrix. Consistency of the matrix data is 
defined and measured by an expression involving the average of the nonprincipal eigen- 
values. We show that hmax = n is a necessary and sufficient condition for consistency. 
We also show that twice this measure is the variance in judgmental errors. A scale of 
numbers from 1 to 9 is introduced together with a discussion of how it compares with 
other scales. To illustrate the theory, it is then applied to some examples for which the 
answer is known, offering the opportunity for validating the approach. The discussion is 
then extended to multiple criterion decision making by formally introducing the notion 
of a hierarchy, investigating some properties of hierarchies, and applying the eigenvalue 
approach to scaling complex problems structured hierarchically to obtain a unidimensional 
composite vector for scaling the elements falling in any single level of the hierarchy. 
A brief discussion is also included regarding how the hierarchy serves as a useful tool for 
decomposing a large-scale problem, in order to make measurement possible despite the 
now-classical observation that the mind is limited to 7 + 2 factors for simultaneous com- 
parison. 

1. INTRODUCTION 

A fundamental problem of decision theory is how to derive weights for a set of activities 
according to importance. Importance is usually judged according to several criteria. 
Each criterion may be shared by some or by all the activities. The criteria may, for 
example, be objectives which the activities have been devised to fulfill. This is a process 
of multiple criterion decision making which we study here through a theory of measure- 
ment in a hierarchical structure. 

The object is to use the weights which we call priorities, for example, to allocate 
a resource among the activities or simply implement the most important activities by 
rank if precise weights cannot be obtained. The problem then is to find the relative 
strength or priorities of each activity with respect to each objective and then compose 
the result obtained for each objective to obtain a single overall priority for all the activities. 
Frequently the objectives themselves must be prioritized or ranked in terms of yet 
another set of (higher-level) objectives. The priorities thus obtained are then used as 
weighting factors for the priorities just derived for the activities. In many applications 
we have noted that the process has to be continued by comparing the higher-level 
objectives in terms of still higher ones and so on up to a single overall objective. (The 
top level need not have a single element in which case one would have to assume rather 
than derive weights for the elements in that level.) The arrangement of the activities; 
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first set of objectives, second set, and so on to the single element objective defines a 
hierarchical structure. 

The paper is concerned with developing a method for scaling the weights of the 
elements in each level of the hierarchy with respect to an element (e.g. criterion or 
objective) of the next higher level. We construct a matrix of pairwise comparisons of the 
activities whose entries indicate the strength with which one element dominates another 
as far as the criterion with respect to which they are compared is concerned. 

If, for example, the weights are wi , i = l,..., n, where n is the number of activities, 
then an entry a($ is an estimate of wi/wj . This scaling formulation is translated into 
a largest eigenvalue problem. The Perron-Frobenius theory (Gantmacher, 1960) ensures 
the existence of a largest real positive eigenvalue for matrices with positive entries whose 
associated eigenvector is the vector of weights. This vector is normalized by having its 
entries sum to unity. It is unique. 

Thus the activities in the lowest level have a vector of weights with respect to each 
criterion in the next level derived from a matrix of pairwise comparisons with respect 
to that criterion. 

The weight vectors at any one level are combined as the columns of a matrix for that 
level. The weight matrix of a level is multiplied on the right by the weight matrix (or 
vector) of the next higher level. If the highest level of the hierarchy consists of a single 
objective, then these multiplications will result in a single vector of weights which will 
indicate the relative priority of the entities of the lowest level for accomplishing the highest 
objective of the hierarchy. If one decision is required, the option with the highest weight 
is selected; otherwise, the resources are distributed to the options in proportion to their 
weights in the final vector. Other optimization problems with constraints have been 
considered elsewhere. 

Special emphasis is placed in this work on the integration of human judgments into 
decisions and on the measurement of the consistency of judgments. From a theoretical 
standpoint consistency is a necessary condition for representing a real-life problem with 
a scale; however, it is not sufficient. The actual validation of a derived scale in practice rests 
with statistical measures, with intuition, and with pragmatic justification of the results. 

2. RATIO SCALES FROM RECIPROCAL PAIRWISE COMPARISON MATRICES 

Suppose we wish to compare a set of n objects in pairs according to their relative 
weights (assumed to belong to a ratio scale). Denote the objects by A, ,..., A, and their 
weights by w1 ,..., w, . The pairwise comparisons may be represented by a matrix 
as follows: 

A, A, .a. A, 
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This matrix has positive entries everywhere and satisfies the reciprocal property aji = 
l/aij . It is called a reciprocal matrix. We note that if we multiply this matrix by the 
transpose of the vector wT = (wr ,..., w,) we obtain the vector rzw. 

Our problem takes the form 

Am = nw. 

We started out with the assumption that w was given. But if we only had A and wanted 
to recover w we would have to solve the system (A - n1)w = 0 in the unknown w. 
This has a nonzero solution if and only if n is an eigenvalue of A, i.e., it is a root of the 
characteristic equation of A. But A has unit rank since every row is a constant multiple 
of the first row. Thus all the eigenvalues hi , i = l,..., ?t, of A are zero except one. Also, 
it is known that 

gr ha = tr(A) = sum of the diagonal elements = n. 

Therefore only one of the hi , which we call Amax , equals n; and 

Ai = 0, hi # nmax . 
The solution w of this problem is any column of A. These solutions differ by a multi- 
plicative constant. However, it is desirable to have this solution normalized so that its 
components sum to unity. The result is a unique solution no matter which column 
is used. We have recovered the scale from the matrix of ratios. 

The matrix A satisfies the “cardinal” consistency property a,ai, = aiL and is called 
consistent. For example if we are given any row of A, we can determine the rest of the 
entries from this relation. This also holds for any set of tl entries whose graph is a spanning 
cycle of the graph of the matrix. 

Now suppose that we are dealing with a situation in which the scale is not known 
but we have estimates of the ratios in the matrix. In this case the cardinal consistency 
relation (elementwise dominance) above need not hold, nor need an ordinal relation 
of the form A, > Ai , Aj > A, imply A, > A, hold (where the Ai are rows of A). 

As a realistic representation of the situation in preference comparisons, we wish 
to account for inconsistency in judgments because, despite their best efforts, people’s 
feelings and preferences remain inconsistent and intransitive. 

We know that in any matrix, small perturbations in the coefficients imply small 
perturbations in the eigenvalues. Thus the problem Aw = nw becomes A’w’ = hmaxw’. 
We also know from the theorem of Perron-Frobenius that a matrix of positive entries 
has a real positive eigenvalue (of multiplicity 1) whose modulus exceeds those of all 
other eigenvalues. The corresponding eigenvector solution has nonnegative entries 
and when normalized it is unique. Some of the remaining eigenvalues may be complex. 

Suppose then that we have a reciprocal matrix. What can we say about an overall 
estimate of inconsistency for both small and large perturbations of its entries ? In other 
words how close is h,,, to n and w’ to w ? If they are not close, we may either revise 
the estimates in the matrix or take several matrices from which the solution vector zu’ 
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may be improved. Note that improving consistency does not mean getting an answer 
closer to the “real” life solution. It only means that the ratio estimates in the matrix, 
as a sample collection, are closer to being logically related than to being randomly chosen. 

From here on we use A = (uU) for the estimated matrix and w for the eigenvector. 
There should be no confusion in dropping the primes. 

It turns out that a reciprocal matrix A with positive entries is consistent if and only if 
h max = a (Theorem 1 below). With inconsistency Am, > n always. One can also show 
that ordinal consistency is preserved, i.e., if A, > Ai (or aik > aik , k = l,..., n) then 
wa 3 w3 (Theorem 2 below). We now establish (Amax - n)/(n - 1) as a measure of the 
consistency or reliability of information by an individual to be of the form wi/wj . We 
assume that because of possible error the estimate has the form wi/wi Eij where Eij > 0. 

First we note that to study the sensitivity of the eigenvector to perturbations in aij we 
cannot make a precise statement about a perturbation dw = (dw, ,..., dw,) in the vector 
w = (WI )...) WJ because everywhere we deal with w, it appears in the form of ratios 
w,/Wj or with perturbations (mostly multiplicative) of this ratio. Thus, we cannot hope 
to obtain a simple measure of the absolute error in w. 

From general considerations one can show that the larger the order of the matrix the 
less significant are small perturbations or a few large perturbations on the eigenvector. 
If the order of the matrix is small, the effect of a large array perturbation on the eigen- 
vector can be relatively large. We may assume that when the consistency index shows 
that perturbations from consistency are large and hence the result is unreliable, the 
information available cannot be used to derive a reliable answer. If it is possible to 
improve the consistency to a point where its reliability indicated by the index is accep- 
table, i.e., the value of the index is small (as compared with its value from a randomly 
generated reciprocal matrix of the same order), we can carry out the following type of 
perturbation analysis. 

The choice of perturbation most appropriate for describing the effect of inconsistency 
on the eigenvector depends on what is thought to be the psychological process which 
goes on in the individual. Mathematically, general perturbations in the ratios may be 
reduced to the multiplicative form mentioned above. Other perturbations of interest 
can be reduced to the general form aij = (Wi/Wj) l ii . For example, 

(Wilwi) + %j = (wd/wj)(l + (wj/Wi) %j)* 

Starting with the relation 

from the ith component of Aw = hmaxw, we consider the two real-valued parameters 
Amax and p, the average of hi , i > 2 (even though they can occur as complex conjugate 
numbers), 

~=-(l/(n-l))~Xi=(hmax--n)i(n-l)~O, hmx=~1 
i=2 
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It is desired to have p near zero, thus also to have hmax, which is always an, near its 
lower bound n, and thereby obtain consistency. Now we show that (hmax - n)/(n - 1) 
is related to the statistical root mean square error. To see this, we have from 

that 

and therefore 

x nlax - n 
iJ= n-1 

= 

Let aij = (wi/wj) Q, cij > 0. Clearly, we have consistency at cii 
imposing the reciprocal relation aj, = I/C+ , we have: 

+ 

z.Z 1. Now by 

a,i -EC . 
wj 

p=-1-t l c , n(n - 1) l$i<j<?l (% + $13 

which -+O as cij -+ 1. Also, p is convex in the Eij since Eij + (l/cu) is convex (and has 
its minimum at cU = I), and the sum of convex functions is convex. Thus, p is small 
or large depending on cij being near or far from unity, respectively; i.e., near or far from 
consistency. 

If we write fij = 1 + Sij , we have 

/I2 = (l/fZ(fZ - 1)) 1 SFj - (S.ff/l + 6,). 
1q<j<n 

Let us assume that ( Sij / < 1 (and hence that S&/(1 + Sij) is small compared with Se). 
This is a reasonable assumption for an unbiased judge who is limited by the “natural” 
greatest lower bound --I on Sii (since aii must be greater than zero) and would tend to 
estimate symmetrically about zero in the interval (-1, 1). Now, p -+ 0 as Sij --f 0. 
Multiplication by 2 gives the variance of the 6, . Thus, 2~ is this variance. 

Suppose now we wish to develop a test of a hypothesis of consistency. Perfect con- 
sistency is stated in the null hypothesis as 

H 0 : p = 0. 

We test it versus its logical one-sided alternative 

HI : y > 0. 

The appropriate test statistic is 

m = (X,, - n)/(n - l), 



HIERARCHICAL STRUCTURES 239 

where X,, is the maximum observed eigenvalue of the matrix whose elements, aij, 
contain random error. Developing a statistical measure for consistency requires finding 
the distribution of the statistic;m. While its specific form is beyond the scope of this 
paper, we observe that m follows a nonnegative probability distribution whose variance 
is twice its mean P and appears to be quite similar to the x2 distribution if we assume that 
all 6, are IV(0, 02) on (-1, 1). Analytically one may have to experiment with other 
distributions such as the j? distribution. 

For our purposes, without knowing the distribution, we use the conventional ratio 
(5 - &/(2%)r)‘12 with p,, = 0, i.e., we use (%/2)1/2 in a qualitative test to confirm the 
null hypothesis when the test statistic is, say, ,<I. Thus when % > 2 it is possible that 
inconsistency is indicated. 

There are several advantages of the eigenvalue method in developing a ratio scale as 
compared with direct estimates of the scale or with least-square methods. For example, 
when compared with the former, it captures more information through redundancy of 
information obtained from pairwise comparisons and the use of reciprocals. When 
compared with either method, it addresses the question of the consistency by a single 
numerical index and points to the reliability of the data and to revisions in the matrix. 

There is no easy way to study the sensitivity of the eigenvector w to errors in A. 
Apart from experiments and the many illustrations, particularly when the order of the 
matrix is large, one may use the following formula, complicated because of the many 
calculations it entails (Wilkinson, 1965): 

Llw, = i (WjT(AA) WJ(A, - Aj) W/Wj) wj , 
i=2 

wr corresponds to h,, . 

Note that this equation requires the computation of the eigenvalues & , i = 1, 2,..., n, 
with h, = X,,, , the right and left eigenvectors of A, wi , and vi , i = 1,2 ,..., n. We have 
shown that wi is generally insensitive to small perturbations in A for our approach, since 
near consistency h, is well separated from hi and vjTwj is never arbitrarily small. 

As already mentioned, it is easy to prove that the solution of the problem Aw = nw 

when A is consistent is given by the normalized row sums or any normalized column 
of A. In addition, the solution to Aw = X,,w when hm, is close to n may be approxi- 
mated by normalizing each column of A and taking the average over the resulting rows. 
This yields a vector a; in this case one can readily obtain an estimate for h,sx by com- 
puting Am, dividing each of the components of the resulting vector by the corresponding 
component of Ed, and averaging the results. 

There are several useful results relating to the eigenvalue procedure. We mention a few 
of them here giving references where necessary. 

THEQREM I. Let A = (asj) be an n x n matrix of positive coeficients with aii = a;‘; 
then A is consistent if and only if h,,, = n. 

Proof. From 

X = f  aijwjwil, 
j=l 
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nh - n = 1 aijwjw,l. 
id=1 

ifj 

It is obvious that aii = wi/wj yields X = n and also A,, = n since the sum of the 
eigenvalues is equal to n, the trace of A. 

To prove the converse, note that in the foregoing expression we have only two terms 
involving aii . They are a,iwiw;l and wiwyl/aij . Their sum takes the form JJ + (l/y). 

To see that n is the minimum value of h ma;r attained uniquely at a, = wi/wi we note 
that for all these terms we have y + (1 /y) 2 2. Equality is uniquely obtained on putting 
y = 1, i.e., aSj = Wi/Wj . Thus, when Amax = n we have 

n2-722 i 2=n2-n, 
i&l 
ifi 

from which it follows that aij = wilwj must hold. 

COROLLARY. For a positive matrix with retiprocal entries we have 

A msx 2 n. 

If A is inconsistent then we would expect that in some cases aij 3 akl need not imply 
(Wi/Wj) > (wk/wt). However, since wi , i = I,..., n, is determined by the value of an entire 
row, we would expect, for example, that if we have ordinal preferences among the 
activities, the following should hold: 

THEOREM 2 (Preservation of Ordinal Consistency). If (ol ,..., 0,) is an ordinal scale 
on the activities C, ,..., C, , where oi > ok implies aij > akj , j = l,..., n, then oi > ok 
implies wi > wk . 

Proof. Indeed, we have from Aw = hmaxw, that 

h maxwi = il a,jwj > gl akjq = &UXXW~ 9 with wi 2 wk. 

Because of its substantial importance, we briefly give the essential facts for the problem 
of existence and uniqueness of a solution to Aw = hmaxw. If A is positive, the following 
theorem of Perron assures the existence of a solution. 

THEOREM 3. A positive matrix A has a real positive, simple “dominant” characteristic 
number AmaX to which corresponds a characteristic vector w = (wl , w2 , . . . , w,,) of the 
matrix A with positive coordinates wi > 0 (i = 1, 2,..., n). 

When A is simply nonnegative, the theorem of Frobenius assures a similar result if A 
is irreducible. 
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DEFINITION 1. A matrix is irreducible if it cannot be decomposed into the form 

(“,1, 
0 

A ) 3 

where A, and A, are square matrices and 0 is the zero matrix. 
The following theorem gives the equivalence of the matrix property of irreducibility and 

the strong connectedness of the directed graph of the matrix. 

THEXEM 4. An n x n complex matrix A is irreducible if and only ij its directed 
graph G(A) is strongly connected. 

We now state the general existence and uniqueness theorem. 

THEOREM 5 (Perron-Frobenius). Let A > 0 be irreducible. Then 

(i) A has a positive ea&nvalue h,,, which is not exceeded in modulus by any other 
eigenvalue of A. 

(ii) The eigenvector of A corresponding to the eigenvalue hm, has positive components 
and is essentially unique. 

(iii) The number h,,, is given by. 

COROLLARY. Let A > 0 be irreducible, and let x 3 0 arbitrary. Then the Perron root 
of A satisjies 

A well-known theorem of Wielandt (1950) . m matrix theory yields a stronger result 
than the following, which may be taken as a corollary to it: 

If A is a nonnegative irrducible matrix, then the value of Amax increases with any 
element aii of A. 

This corollary does not say explicitly how Amax increases with aij . However, an 
interesting observation for our purpose is that while an increase in aii gives rise to an 
increase in Amax , this increase is partly offset by a decrease in aji = llaij which is one 
of the requirements in filling out the comparison matrix A. 

It is known that the normalized row of the limiting matrix of Ak corresponds to the 
normalized eigenvector of Aw = h maxw. There are several ways of proving this. The 
simpler proofs require special assumptions on the eigenvectors of A. 

DEFINITION 2. We define the norm of the matrix A by // A I/ 3 (Ae)rd (i.e., it is 
the sum of all entries of A), where 

1 
1 e= . . i! i 



242 THOMAS L. SAATY 

DEFINITION 3. A nonnegative irreducible matrix A is primitive if and only if there 
is an integer p > 1 such that Ap > 0. 

THEOREM 6. For a primitive matrix A 

where C is a constant and wmax is the normalized eigenvector corresponding to h,,, . 

The following theorem asserts that the ratios of normalized eigenvector components 
remain the same when any row and corresponding column are deleted from a consistent 
matrix of pairwise comparisons. 

THEOREM 7. If  A is a positive consistent matrix and A’ is obtainedfiom A by deleting 
the ith row and ith column then A is consistent and its corresponding ez@nvector is obtained 
from that of A by putting wi = 0 and normalizing the components. 

Proof. Given any row of A, e.g., the first, we have aii = alj/ali, j = I,..., n. Thus 
the ith row of A depends on the ith column entry in its first row being given. Conversely, 
aj, = a,,/alj . Thus no entry in A’ depends on the ith row or ith column of A and hence 
A’ is also consistent. Since their entries coincide except in the ith row and ith column 
of A and since the solution of an eigenvalue problem with a consistent matrix is obtained 
from any normalized column, the theorem follows. 

Remark. In the general case, if A = (aij) is a matrix of pairwise comparisons and 
A’ = (a;J with aii = aij , i, f  = I,..., n, i # k, j # k, aij = 0, i = k or j = k, and 
if the normalized eigenvector solutions of Aw = hmaxw and A’w’ = hmaxw’ are w and 
w’, respectively, then wk’ = 0 but wa’/wo’ # w,/ws , for all 01 and /3. In other words 
leaving one activity out of a pairwise comparison matrix does not distribute its weight 
proportionately among the other activities. The reason can be seen from the limiting 
relations which show that each activity is involved with the others in a complicated way. 

EXAMPLE. Here we are only interested in numerical entries of the eigenvector. In 
measurement of the relative wealth of nations illustration given later, the USSR, which 
occupies the second entry, is in the first comparison but is taken out in the second, 
retaining the others. No proportionality equivalence is observed. 

U.S. USSR China 

0.427 0.230 0.021 

0.504 0.0 0.0258 

France U.K. Japan W. Germanv 

0.052 0.052 0.123 0.094 

0.0728 0.0728 0.184 0.140 

The following theorem shows that seeking an order type of relationship between aij 
and wi/wj involves all of A and its powers in a complicated fashion. 
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THEOREM 8. For a primitive matrix A we have aij 3 akl if and only ifwi/wj 2 w,Jw, , 
whenever 

holds. (A pth subscript on a vector indicates the use of its pth entry.) 

Proof. In a typical case 

from which we have 

aij = &i 
eo, 

It also follows that 

ak2 = aknWq , 

aij > ukz t hwi > $ + 
wj 

a,&!, - L c akqwq . 
WZ q+z 

Thus, the theorem is true whenever the following inequality holds: 

(llwj) C QipW, 3 (liwz) C akqwa - 
P#i QZZ 

Using Theorem 6 we replace every w, by 

yielding the proof. 
Assume that our mind in fact works with pairwise comparisons but the aif are not 

estimates of WJWj but of some function of the latter, aij(wJwj). For example, Stevens 
(1959) observed that aij as perceived for prothetic phenomena takes the form (wJw,uI)“, 
where a lies somewhere between 0.3 (in the case of loudness estimation) and 4 (in the 
case of electric shock estimation). For metathetic phenomena, Stevens points out that 
the power law need not apply, i.e., a = 1. 

Thus it is of interest to study the general form of the solution gi(wi), i = I,..., n, 
of an eigenvalue problem satisfying the generalized consistency condition of the form 

f(%> f(%k) = f(Qik)- 

THEOREM 9 (The Eigenvalue Power Law). If the matrix A = (aij(wJwj)) of order n 
satisfies the generalized consistency condition, then the eigenvalue problem 

i aij(wi/wj> gf(wj) = ngi(wi), i = 1,***~ % 

has the e&nvertor solution (~~a,..., w,~) = (gl(wl),..., gn(wn)). 
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Proof. Substituting the relation 

%04wJ = Ei(W,)/gi(euj) 

satisfied by the solutiongi(wJ, i = I,..., n, of the eigenvalue problem into the consistency 
condition we have 

f  M~iY&(~~)l f  E&(~h&%Jl = f  ki(aT&4 * ~,~~~>/~iWl~ 

or if we put 

x = &e%)/&(fu~) and Y = ~dw%dWk)~ 

we have 

f(x)f(r) =f(xr)- 

This functional equation has the general solution 

f(x) = xa. 

Thus generalizing the consistency condition for A implies that a generalization of 
the corresponding eigenvalue problem (with A,, = n) is solvable if we replace u,~ 
by a constant power a of its argument. But we know that when a = 1, aii = WilWj ; 
thus, in general, aii = (wi/wUi)a, which implies that 

&(~i)/&4 = (WilW?, i,j= 1 >***, n, 

and hence, 

g,(w,> = w = &i), i = l,..., 71. 

Thus the solution of a pairwise comparison eigenvalue problem satisfying consistency 
produces estimates of a power of the underlying scale rather than the scale itself. In 
applications where knowledge, rather than our senses, is used to obtain the data, one 
would expect the power to be equal to unity and, hence, we have an estimate of the 
underlying scale itself. This observation may be useful in social applications. 

3. THE SCALE 

We now discuss the scale we recommend for use which has been successfully tested 
and compared with other scales. 

The judgments elicited from prople are taken qualitatively and corresponding scale 
values are assigned to them. In general, we do not expect “cardinal” consistency to hold 
everywhere in the matrix because people’s feelings do not conform to an exact formula. 
Nor do we expect “ordinal” consistency, as people’s judgments may not be transitive. 
However, to improve consistency in the numerical judgments, whatever value aii is 
assigned in comparing the ith activity with the jth, the reciprocal value is assigned to 
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aji . Thus we put aji = l/a, . Usually we first record whichever value represents 
dominance greater than unity. Roughly speaking, if one activity is judged to be (Y times 
stronger than another, then we record the latter as only l/a times as strong as the former. 
It can be easily seen that when we have consistency, the matrix has unit rank and it is 
sufficient to know one row of the matrix to construct the remaining entries. For example, 
if we know the first row then a,j = a,JaIi (under the rational assumption of course, 
that aIi # 0 for all i). 

It is useful to repeat that reported judgments need not be even ordinally consistent 
and, hence, they need not be transitive; i.e., if the relative importance of C, is greater 
than that of C’s and the relative importance of C, is greater than that of C, , then the 
relation of importance of C, need not be greater than that of C’s, a common occurrence 
in human judgments. An interesting illustration is afforded by tournaments regarding 
inconsistency or lack of transitivity of preferences. A team C, may lose against another 
team C, which has lost to a third team Cs ; yet C, may have won against Cs . Thus, 
team behavior is inconsistent-a fact which has to be accepted in the formulation, and 
nothing can be done about it. 

We now turn to a question of what numerical scale to use in the pairwise comparison 
matrices. Whatever problem we deal with we must use numbers that are sensible. From 
these the eigenvalue process would provide a scale. As we said earlier, the best argument 
in favor of a scale is if it can be used to reproduce results already known in physics, 
economics, or in whatever area there is already a scale. The scale we propose is useful for 
small values of rz < 10. 

Our choice of scale hinges on the following observation. Roughly, the scale should 
satisfy the requirements: 

1. It should be possible to represent people’s differences in feelings when they 
make comparisons. It should represent as much as possible all distinct shades of feeling 
that people have. 

2. If we denote the scale values by x1 , x2 ,..., xP , then let 

xi+1 - xi = 1, i=l ,*.., p - 1. 

Since we require that the subject must be aware of all gradations at the same time, 
and we agree with the psychological experiments (Miller, 1956) which show that an 
individual cannot simultaneously compare more than seven objects (plus or minus two) 
without being confused, we are led to choose ap = 7 + 2. Using a unit difference between 
successive scale values is all that we allow, and using the fact that x1 = 1 for the identity 
comparison, it follows that the scale values will range from 1 to 9. 

As a preliminary step toward the construction of an intensity scale of importance for 
activities, we have broken down the importance ranks as shown in the following scale 
(Table 1). In using this scale the reader should recall that we assume that the individual 
providing the judgment has knowledge about the relative values of the elements being 
compared whose ratio is 21, and that the numerical ratios he forms are nearest-integer 
approximations scaled in such a way that the highest ratio corresponds to 9. We have 
assumed that an element with weight zero is eliminated from comparison. This, of course, 
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TABLE 1 

The Scale and Its Desceiption 

Intensity of 
importance Definition Explanation 

I” 

3 

5 

7 

9 

Equal importance 

Weak importance of one 
over another 

Essential or strong importance 

Demonstrated importance 

Absolute importance 

Two activities contribute equally to 
the objective 

Experience and judgment slightly favor 
one activity over another 

Experience and judgment strongly favor 
one activity over another 

An activity is strongly favored and its 
dominance is demonstrated in practice. 

The evidence favoring one activity over 
another is of the highest possible 
order of affirmation 

2,4, 6 8 Intermediate values between When compromise is needed 
the two adjacent judgments 

Reciprocals of If activity i has one of the above 
above nonzero nonzero numbers assigned to it 

when compared with activityj, 
then j has the reciprocal value 
when compared with i 

Rationals Ratios arising from the scale If consistency were to be forced by 
obtaining n numerical values to span 
the matrix 

o On occassion in 2 by 2 problems, we have used 1 + E, 0 < E Q 3 to indicate very slight 
dominance between two nearly equal activities. 

does imply that zero may not be used for pairwise comparison. Reciprocals of all 
scaled ratios that are >l are entered in the transpose positions (not taken as judgments). 
Note that the eigenvector solution of the problem remains the same if we multiply the 
unit entries on the main diagonal, for example, by a constant greater than 1. 

At first glance one would like to have a scale extend as far out as possible. On second 
thought we discover that to give an idea of how large measurement can get, scales must 
be finite. We also note that one does not measure widely disparate objects by the same 
yardstick. Short distances on a piece of paper are measured in centimeters, longer distances 
in a neighborhood in meters, and still larger ones in kilometers and even in light years. 
To make comparisons of the sizes of atoms with those of stars, people, in a natural 
fashion, insert between thse extremes, objects which gradually grow larger and larger 
enabling one to appreciate the transition in the magnitudes of measurement. To make 
such a transition possible the objects are divided into groups or clusters whereby the 
objects put into each group are within the range of the scale and the largest object in 
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one group is used as the smallest one in the next larger group. Its scale values in the two 
groups enable one to continue the measurement from one group to the next and so on. 
We have more to say about clustering in a later section. 

In practice, one way or another, the numerical judgments have to be approximations, 
but how good these approximations are is the question to which our theory is aimed. 

A typical question to ask in order to fill in the entries in a matrix of comparisons is: 
Consider two activities i on the left side of the matrix and another j on the top; which of 
the two has the property under discussion more, and how strongly more (using the scale 
values 1 to 9) ? This gives us aij . The reciprocal value is then automatically entered for aji . 

It should be noted that consistency is a necessary but not a sufficient condition for 
judging how good a set of observational data is. The consistency may be good, but the 
correspondence of the judgments to reality may be poor. We have already discussed how 
one may decide on the goodness of consistency by comparing the mean p with the 
standard deviation (2p)li2 and requiring that their ratio be < 1. Alternatively, one may 
accept H, on comparing p with its average value from the solutions of a sizable sample 
of eigenvalue problems whose matrices have random entries from the scale 1 to 9 using 
the reciprocal value in the transpose position. For these averages for matrices of different 
order see the discussion below. 

As yet there is no statistical theory (to the best of our knowledge) which would assist 
us in deciding how well judgmental data correspond to reality. We have occasionally 
used the root mean square deviation (RMS) and the median absolute deviation about 
the median (MAD). These indicators are probably more useful in making interscale or 
interpersonal comparisons in judgments than as absolute measures of the goodness of fit. 
We have not found the x2 test useful. It is clear that this is an area of research that is 
worth pursuing. 

Considerable effort has been concentrated on comparing the scale 1 to 9 with 25 other 
scales suggested to us by a number of people. We took pairwise qualitative judgments 
described in our scale including qualities between those mentioned in the table. For 
example, a judge could simply say in a comparison that it is between equal and weak 
or between weak and strong, etc. Five applications were made. Three of them were 
examples described below: distance estimation,, optics, and wealth. We replaced the 
qualities by numbers from each scale uniformly distributed over the qualities, sometimes 
leaving gaps as many of the scales had a wide range. For each scale we then calculated 
the eigenvector after using the reciprocal property in the matrix. Our object was to 
compare all these eigenvectors for each example with the true answer, which was known, 
and compare the RMS and MAD. On the whole we had the best results for the scale 1 to 9 
even though the consistency for this scale was not always the best. 

It also turns out that a good judge gives good results by any scale including direct 
estimation. A judge who is not an expert can see in the pairwise comparison process 
where his judgment is strong and where it is weak. The eigenvalue approach is excellent 
for bargaining purposes as it permits people to debate the reasons for their estimates, 
arrive at a consensus, and make compromises here and there. In over 30 applications 
of the process, we noted that people were generally very content with the interaction 
and the outcome. 
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Figure la and its associated table (Table 2) are of interest. For each order matrix we 
constructed a sample of size 50 and filled in its entries at random from the scales 1-5, 
1-7, 1-9, I-15, I-20, and I-90. Thus, for example, for the scale 1-5, the main diagonal 
entries are unity and for each position above the diagonal we chose any of the integers 1-5 
or their reciprocals at random. The reciprocal of this entry was then given to its transpose. 
The same procedure was carried out for the other scales. We averaged (Amax - n)/(n - 1) 

for the 50 matrices corresponding to each value of n and for each scale. 

* l-20 4-c 

3.: 

3.C 
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l t l 
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. . 
. 
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FIG. la. Average consistency for matrices with random entries. 

We obtained the Table 2 and Fig. la, which corresponds to it. This table is useful for 
comparing the significance of the inconsistency calculated for a particular problem with 
the average value obtained for the scale being used. In our case the relevant values are 
for the scale l-9. In this comparison we can require the ratio to be very small; e.g., of 
the order of 0.1. Note that a plot of the row in the table corresponding to the scale l-90 
is not given as the original drawings carried the plot beyond the page. 

We now make another interesting observation using this result. It is generally known 
that if h is any of the eigenvalues of a matrix, then / /\ - aii 1 < xi.++. ) aij ( for some i, 
i = I,..., n. 
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Since for a reciprocal positive matrix A max 3 n and aii = 1, we may simply write 

Now the maximum value for any aij when we use the scale 1-9 is 9. Thus Amax is at 
most equal to 98. We also note that (A,,, - n)/(n - 1) < S(n/(n - 1)) and is therefore 
bounded above. In fact, as n --f 00 one can show that p = (Amax - n)/(rr - 1) tends to 
a limit, a result confirmed by our statistical approach. We leave the theoretical calculation 
of this asymptotic limit for a separate paper. What we have done (instead of using 
difference methods) is to take the average of the last three values, i.e., for n == 13, 14, 15 
in Table I for each scale, and use it as an approximation to the limiting value. If  we 

denote this value by L, for scale s, we then calculate a new table using C -= (L,? - p)/Ls 
for each n. C measures consistency expressed as an index between zero and unity. 
This leads to Table 3 and its associated graph, Fig. 1 b. 
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FIG. 1 b. Consistency normalized using asymptotic value. 
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TABLE 3 

Normalized Measure of Consistency C 

Scale 

l-5 

1-7 

l-9 

1-15 

l-20 

l-90 

Order of matrix 

2 3 4 5 6 7 8 9 10 11 
- 

1.000 0.616 0.472 0.255 0.245 0.169 0.035 0.089 0.036 0.068 

1.000 0.511 0.522 0.328 0.242 0.214 0.124 0.087 0.080 0.039 

1.000 0.718 0.424 0.244 0.221 0.088 0.096 0.109 0.037 0.055 

1.000 0.749 0.384 0.280 0.141 0.165 0.160 0.102 0.049 0.023 

1.000 0.662 0.478 0.248 0.144 0.125 0.082 0.053 0.028 0.051 

1.000 0.839 0.479 0.226 0.194 0.118 0.126 0.069 0.043 0.061 

Now this is the consistency measured for randomly filled matrices. In general, informed 
judgment leads to better consistency. However, all the plots show that when the number 
of objects being compared exceeds 7 + 2, the consistency can be expected to be very 
poor-a theoretical confirmation of Miller’s psychological observation. Later on we show 
how to overcome this limitation on the number of objects by using a method of hierarchical 
clustering. 

We have extended the method to the construction of a matrix of data from an incomplete 
set of judgments. In some cases, regression analysis or row and column means have been 
used to estimate the missing entries, but this differs from the way we approach the 
problem. Our use of hierarchical decomposition allows one to group N objects into a 
manageable number of clusters, perform the pairwise comparisons on these clusters, 
obtaining an eigenvector of weights for them. One then decomposes each cluster into 
smaller clusters and so on, each time performing similar operations, but then composing 
the results in a manner to be discussed later to obtain an overall weighting. Thus, in 
general, the number of comparisons required is considerably less than (N2 - N)/2. 
However, we can also simplify the task in each matrix by asking for judgments to be 
supplied in n positions forming a spanning cycle of the complete graph of our matrix. 
The TJ judgments thus obtained may be used to construct the entire matrix through 
the relation ~a,~ = uik which plays an important role in our theory. Our consistency 
index is then calculated. If it is small, the corresponding eigenvector is the desired 
solution. Otherwise, a matrix of ratios of eigenvector values is constructed, absolute 
differences from the original matrix are computed, and a new judgment is obtained for 
the largest difference entry. The iterations are continued using the new matrix with 
a view to improving consistency. Thus, pursuit of consistency remains central in our 
approach to the incomplete data problem. The procedure requires testing, as we have 
often filled the entire set of (9 - n)/2 values in each cluster. 
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l?xamples 

1. Distance Estimation through Air Travel Experience 

The Eigenvalue method was used to estimate the relative distances of six cities from 
Philadelphia by making pairwise comparisons between them as to which was how strongly 
farther from Philadelphia. 

It is interesting to note that the cities cluster into three classes-those nearest to 
Philadelphia: Montreal and Chicago; those which are intermediate: San Francisco and 
London; and those farthest: Cairo and Tokyo. The latter, because of relatively large 
value due to errors of uncertainty, cause the values of the others to be perturbed from 
where we want them to be. Thus, if their eigenvector components change comparatively 
slightly, and the increment is distributed among the others, the relative values of these 
can be altered considerably. 

The next matrix (Table 4) gives numerical values to the perceived remoteness from 

TABLE 4 

Comparisons of Distances of Cities from Philadelphia 

Cairo 

Tokyo 

Chicago 

San Francisco 

London 

Montreal 

San 
Cairo Tokyo Chicago Francisco London Montreal 

1 g 8 3 3 I 

3 1 9 3 3 9 

Q 9 I 8 8 2 

Q Q 6 1 4 6 

8 1 5 3 1 6 

3 + t 8 $ 1 

Philadelphia for each pair of cities. The rows indicate the strength of dominance. The 
question to ask is: Given a city (on the left) and another (on top) how much strongly 
farther is the first one from Philadelphia than the second ? We then put the reciprocal 
value in the transpose position. Compare the solution of the eigenvalue problem with 
the actual result given in Table 5. (For a more detailed explanation of the use of the scale 
in an application see the explanation under the matrix of Example 3 below.) We have 
h max = 6.45. Our qualitative statistical test shows that the consistency is good since 
(~,/2)l/a = (0.09/2)1’2 = 0.21 < 1. Al so, comparison of inconsistency with the value 
for n = 6 (scale l-9) from Table 2 gives 0.09/l .15 = 0.08, which is good. 

Besides the largest eigenvalue 6.45, this example has the following remaining eigen- 
values: -0.260, -0.230 + 0.665i, -0.230 - 0.6653, 0.133 + 1.577i, 0.133 - 1.5771’. 

2. Illumination Intensity and the Inverse Square Law 

The rate at which a source emits light energy evaluated in terms of its visual effects 
is spoken of aa light flux. The illumination of a surface is defined as the amount of light 
flux it receives per unit area. 
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TABLE 5 

Actual and Judgmental Distances 

City 

Distance to 
Philadelphia 

(miles) 
Normalized 

distance Eigenvector 

Cairo 5729 0.278 0.263 

Tokyo 7449 0.361 0.397 

Chicago 660 0.032 0.033 

San Francisco 2732 0.132 0.116 

London 3658 0.177 0.164 

Montreal 400 0.019 0.027 

The following experiment was conducted in search of a relationship between the 
illumination received by four identical objects (placed on a line at known distances 
from a light source) and of the distance from the source. The comparison of illumination 
intensity was performed visually and independently by two sets of people. The objects 
were placed at the following distances measured in yards from the light source: 9, 15, 21, 
and 28. In normalized form these distances are: 0.123, 0.205, 0.288, 0.384. 

The two matrices of pairwise comparisons of the brightness of the objects labeled in 
increasing order according to their nearness to the source where the judges were located 
are: 

Relative visual brightness Relative visual brightness 
(1st trial) (2nd trial) 

Relative brightness eigenvector 

1st trial (Amax = 4.39) 

0.61 

0.24 

0.70 

0.05 

Relative brightness eigenvector 

2nd trial (AmaX = 4.1) 

0.62 

0.22 

0.10 

0.06 

The top two columns of Table 6 should be compared with the bottom-right column 
calculated from the inverse square law in optics. 
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TABLE 6 

Inverse Square Law of Optics 

Distance 
Normalized 

distance 

Square of 
normalized 

distance 

Recriprocal of 
square 
column 

Normalized 
recriprocal 

Rounding 
Off 

9 0.123 0.015129 66.098 0.6079 0.61 

15 0.205 0.042025 23.79 0.2188 0.22 

21 0.288 0.082944 12.05 0.1108 0.11 

28 0.384 0.147456 6.78 0.0623 0.06 

Note the sensitivity of the results as the object is very close to the source for then it 
absorbs most of the value of the relative index and a small error in its distance from 
the source yields great error in the values. What is noteworthy from this sensory experi- 
ment is the observation or hypothesis that the observed intensity of illumination varies 
(approximately) inversely with the square of the distance. The more carefully designed 
the experiment, the better the results obtained from the visual observation. 

It may be of interest to mention in passing that the eigenvalues of the second pairwise 
comparison matrix above besides the largest, which is 4.1, are -0.078, -0.012 + 0.6463 
and its complex conjugate is -0.012 - 0.6462’. 

This experiment was repeated with more objects and different distances, again with 
good results. Some psychophysicist colleagues have felt that if great distances had been 
used in the experiment the result would not have been as good because Stevens’ power 
law has exponent # 1 for brightness. We feel that long distances and many objects 
could be composed into clusters hierarchically and our procedure, described below, 
might still apply. Perhaps people “compensated” for distance in judging “illumination.” 
If s = 1” is the “true” brightness sensation, J = Des is the “compensation formula,” 
and I = D-2 is the inverse square law, then /3 - 2” = -2 if J = D-?-; 01 = 0.25 to 0.5 
in Stevens’ work: If /3 = -1, 01 = 0.5. If /3 = -1.5, 01 = 0.25. 

3. The Wealth of Nations through Their World Injuence 

A number of people have studied the problem of measuring the world influence of 
nations. We have briefly examined this concept within the framework of our model. 
We assumed that influence is a function of several factors. We considered (Saaty and 
Khouja, 1976) five such factors: (1) human resources; (2) wealth; (3) trade; (4) technology; 
and (5) military power. Culture and idealogy, as well as potential natural resources 
(such as oil), were not included. 

Seven countries were selected for this analysis. They are the United States, the U.S.S.R., 
China, France, the United Kingdom, Japan, and West Germany. It was felt that these 
nations as a group comprised a dominant class of influential nations. It was desired to 
compare them among themselves as to their overall influence in international relations. 
We realize that what we have is a very rough estimate-mainly intended to serve as 
an interesting example of an application of our approach to priorities. We only illustrate 



HIERARCHICAL STRUCTURES 255 

the method with respect to the single factor of wealth. The question to answer is: how 
much more strongly does one nation as compared with another contribute its wealth to 
gain world influence ? 

TABLE 7 

Wealth Comparison of Nations 

u. s. 

USSR 

China 

France 
U. K. 

Japan 

W. Germany 

W. 
u. s. USSR China France U. K. Japan Germany 

1 4 9 6 6 5 5 

t 1 7 5 5 3 4 

9 -+ 1 -2 Q .$ ” 

1 Q 5 1 1 * 3 
6 1 

5 
5 1 1 + .$ 

+ Q 7 3 3 1 2 

Q a 5 3 3 ii 1 

The first row of Table 7 gives the pairwise comparison of the wealth contributed by the 
United States with the other nations. For example, it is of equal importance to the United 
States (hence, the unit entry in the first position), between weak and strong importance 
when compared with the U.S.S.R. (hence, the value 4 in the second position), of absolute 
importance when compared with China (hence, the value 9 in the third position). We have 
values between strdng and demonstrated importance when compared with France and 
the United Kingdom (hence, a 6 in the next two positions), strong importance when 
compared with Japan and Germany (hence a 5 in the following two positions). For the 
entries in the first column we have the reciprocals of the numbers in the first row indicating 
the inverse relation of relative strength of the wealth of the other countries when compared 
with the United States, and so on, for the remaining values in the second row and second 
column, etc. 

Note that the comparisons are not consistent. For example, U.S. : U.S.S.R. = 4, 
U.S.S.R. : China = 7, but U.S. : China = 9, not 28. 

Nevertheless, when the requisite computations are performed, we obtain relative 
weights of 42.9 and 23.1 for the United States and Russia, and these weights are in 
striking agreement with the corresponding GNP’s as percentages of the total GNP 
(see Table 8). Thus, despite the apparent arbitrariness of the scale, the irregularities 
disappear and the numbers occur in good accord with observed data. 

The largest eigenvalue of the wealth example is 7.61 and the remaining eigenvalues 
are -0.228, 2 x lOelI, -0.330 + 0.5881’, -0.330 - 0.588i, 0.14 + 2.06i, 0.14 - 2.06i. 
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TABLE 8 

Normalized Wealth Eigenvector 

Normalized Actual Fraction of 
eigenvector GNPa (1972) GNP Total 

u. s. 0.429 1167 0.413 

USSR 0.231 635 0.225 

China 0.021 120 0.043 

France 0.053 196 0.069 

U. K. 0.053 154 0.055 

Japan 0.119 294 0.104 

W. Germany 0.095 257 0.091 

Total 2823 

a Billions of dollars. 

Compare the normalized eigenvector column derived by using the matrix of judgments 
in Table 8 with the actual GNP fraction given in the last column. The two are very 
close in their values. Estimates of the actual GNP of China range from 74 billion to 
128 billion. Cluster analysis can be used to show that China probably should not be in 
the group. 

4. W%ht Estimutim. 

First, we compared five objects in pairs by picking them up one at a time to get an 
idea of the range of their weight intensities; then we compared all of the objects with 
each one by picking them up with the right hand one at a time. The objects and the 
matrix of pairwise comparison are as shown in Table 9. 

TABLE 9 

Weight Comparison of Objects 

Radio 
Large Small 

Typewriter attache case Projector attache case 

Radio 1 Q 3 a 4 

Typewritter 5 1 2 2 8 

Large attache case 3 B 1 t 4 

Projector 4 & 2 1 7 

Small attache case :- + 9 3 7 1 
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The resulting eigenvector and vector of actual relative weight are given by 

Eigenvector Actual 

0.09 0.10 

0.40 0.39 

0.18 0.20 

0.29 0.27 

0.04 0.04 

The root mean square deviation is given by 0.0158, less than a 2 y0 error, indicating 
a good estimate. It is worth noting that comparing objects to estimate their weights by 
lifting them up with the hand is something people rarely do. Thus, one would expect 
wider scatter in the results than, for example, in an optics experiment where the eyes 
are used to compare the relative brightnesses of objects from a light source, something 
the eye does all the time. Greater precision is expected from the eye because of its 
experience. 

The largest eigenvalue is 5.16 and the remaining ones are -0.056 + 0.433i, 
-0.056 - 0.433i, -0.025 + 0.798i, -0.025 - 0.7982’. 

4. HIERARCHIES-GENERAL CONSIDERATIONS 

Although most people have an idea of what a hierarchy is, few use the concept in 
their thinking. Fewer still realize how important and powerful a hierarchy is as a model of 
reality when viewing a complex system of interacting components. 

First, we give an overview of the idea of a hierarchy, its application to real systems 
and to thought processes, and its usefulness as a general model. We then present a 
formal theory for the analysis of hierarchies and their stability and explain what to do 
with the model after it is obtained. Although the latter research is relatively new, it has 
been put to use in a number of practical applications. 

Among these we mention: (1) a development of a theory of priorities, (2) a theory 
of two-point boundary planning (forward and backward processes), and (3) a new 
method in conflict resolution. 

Any system can be represented by a large interaction matrix whose rows and columns 
are components of the system. When component i and component i interact strongly, 
the i, jth entry is near f 1. When they do not interact, the entry is near zero. In a large 
system, most of the entries are close to zero. Using the concept of a reachability matrix 
and its powers, a distinct hierarchic structure is often discerned. In fact, this arrangement 
of the elements of a system in an incidence type of matrix can be used to identify the 
levels of a hierarchy. We do not describe this well-known process here because it usually 
produces results in line with one’s intuition about what falls in which levels. In the 
simplest type of hierarchy an upper level dominates the neighboring lower level. 



258 THOMAS L. SAATY 

Different levels of a hierarchy are generally characterized by differences in both 
structure and function. The proper functioning of a higher level depends on the proper 
functioning of the lower levels. The basic problem with a hierarchy is to seek under- 
standing at the highest levels from interactions of the various levels of the hierarchy rather 
than directly from the elements of the levels. Rigorous methods for structuring systems 
into hierarchies are gradually emerging in the natural and social sciences and in particular, 
in general systems theory as it relates to the planning and design of social systems. 

Hierarchies are order-preserving structures. They involve the study of order among 
partitions of a set. The partitions are called the levels of the hierarchy. Conceptually 
the simplest hierarchy is linear, rising from one level to an adjacent level. The complexity 
of the arrangement of the elements in each level may be the same or it may increase from 
level to level. This also applies to the depth of analytical detail. A hierarchy may emerge 
gradually from one root (e.g., the development of the human race from a first man) 
or it may descend in rank from one boss, as in an organization. It may grow by adding 
parts like a snowball or it may be a simple gradual arrangement of the levels according 
to a pattern. The structure of each level may take the form of a general network repre- 
senting the appropriate connections among its elements. This last subject is of considerable 
interest to us in developing a methematical theory of hierarchies as we obtain a method 
for evaluating the impact of a level on an adjacent level from the interactions of the 
elements in that level. 

Perhaps one of the most interesting analytical works which have enriched the concept 
of hierarchy is the paper by Simon and Ando (1961), f rom which the first author derived 
many insights into hierarchies for his subsequent works on the subject. 

A simple comprehensive example of a hierarchy begins with the entire universe as 
one level, galactic clusters as the next level, then successively to galaxies, constellations, 
solar systems, planets, clumps of matter, crystals, compounds, molecular chains, 
molecules, atoms, nucleii, protons, and neutrons. Another example of a hierarchy is that 
representing the structure of living organism, and a third example would be one which 
represents the functions of an organizational hierarchy. The following are two illustrations. 
(See Fig. 2 and 3.) A hierarchy is complete when each level connects to all elements in 
the next higher level. 

OVERALL WtLFARE OFA NATI ON 

n 
LeVe I 

Second 

Hierarchy 

Level 
National 
Defense 

Third Hierarc 

Level 

INDUSTRIES 

FIG. 2. A complete hierarchy for priorities of industries. 
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FIG. 3. A hierarchy for priorities of transport projects in national planning. 

In Fig. 2 the first hierarchy level has a single objective, the overall welfare of a nation. 
Its priority value is assumed to be equal to unity. The second hierarchy level has three 
objectives, strong economy, health, and national defense. Their priorities are derived 
from a matrix of pairwise comparisons with respect to the objective of the first level. 
The third hierarchy level objectives are the industries. The object is to determine the 
impact of the industries on the overall welfare of a nation through the intermediate 
second level. Thus their priorities with respect to each objective in the second level are 
obtained from a pairwise comparison matrix with respect to that objective and the 
resulting three priority vectors are then weighted by the priority vector of the second 
level to obtain the desired composite vector of priorities of the industries. 

In Fig. 3 the hierarchy consists of four levels: the first is the overa welfare of a nation; 
the second, a set of possible future scenarios of that nation; the third, the provinces of 
that nation; and the fourth, transport projects which fall in the provinces. Note that 
here not every province affects each future scenario nor does each project affect every 
province. The hierarchy in Fig. 3 is not a complete one. The object here is to determine 
the priorities of the projects as they impact on the overall objective. Here one must 
weight the priorities of each comparison set by the ratio of the number of elements in 
that set to the total number of elements in the fourth level. This is what one has to do 
when the hierarchy is not complete. 

Hierarchies may be used to represent both the structural and functional relations of a 
system. Because of the close identification of hierarchies; i.e., autonomous, dynamic, 
etc., each element of a given hierarchy may belong functionally to several other different 
hierarchies. A spoon may be arranged with order spoons of different sizes in one hierarchy 
or with knives and forks in a second hierarchy. For example, it may be a controlling 
component in a level of one hierarchy or it may simply be an unfolding of higher- or 
lower-order functions in another hierarchy. 

A hierarchical structure may not be reversible. We can see this by looking at processes 
of planning. This type of planning is simply and graphically demonstrated in a relevant 
way in space travel. Launching a manned craft and returning it to its starting point 
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is a two-point boundary problem. Different considerations are involved in getting it from 
one point to the second than in getting it from the second to the first. In the forward 
process, high velocity and the effect of gravity are the critical factors. It is important to 
know how many g’s are exerted on the body. In the backward process, air resistance and 
the need for parachutes or other deceleration devices, heat transfer, and the tolerance of 
the heat shield material are the important factors. These factors are also there in the 
launching process but they are not the critical ones. The two sets of factors must be taken 
into consideration to solve the entire problem. 

Another feature of the two hierarchies of the forward and backward planning processes 
is that they cannot be easily linked. To see this we note that both processes can be 
represented by “exploding trees.” The theory we briefly describe here enables us to 
contain or limit the size of the hierarchy to its essential components and still get an 
effective representation of a system. The result is to facilitate the process of interaction 
between the two hierarchies. 

There is a dichotomy as to whether a hierarchy is a convenient tool of the mind or 
whether nature actually is endowed with hierarchical structures and functions. Consider- 
able evidence has been put together to support the latter idea. Here are brief eloquent 
expressions in defense of each point of view. 

The immense scope of hierarchical classification is clear. It is the most powerful method of 
classification used by the human brain-mind in ordering experience, observations, entities 
and information. Though not yet definitely established as such by neurophysiology and 
psychology, hierarchical classification probably represents the prime mode of coordination or 
organization (i) of cortical processes, (ii) of their mental correlates, and (iii) of the expression of 
these in symbolisms and languages. The use of hierarchical ordering must be as old as human 
thought, conscious and unconscious . . . . (Whyte, 1969). 

Direct confrontation of the large and the small is avoided in nature through the use 
of a hierarchical linkage. Bigness is avoided by functionally bounding the ratio between 
the size of the hierarchy and that of its levels. 

In the more than fifty years of my intimate preoccupation, with the phenomena and problems 
of morphogenesis . . . I have been unable to find a way of deriving, free from all preoccupations, 
a comprehensive and realistic description of the developmental process otherwise than by 
reference to a dualistic concept, according to which the discrete units are enmeshed in, and 
interplay with, an organized reference system of unified dynamics of the collective of which 
they are the members. (Weiss, 1971). 

In either case, our present purpose is to assist our understanding of the interrelations 
that at least the model claims exist. 

Now, for some properties of hierarchical structures: 

(1) A significant observation is that they usually consist of a few kinds of sub- 
systems in various combinations and arrangements-a multitude of proteins from about 
20 amino acids; a very large variety of molecules from about a hundred elements. 
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(2) They are nearly decomposable; i.e., connections between levels are far simpler 
than the connections between the elements in a level. Thus, only the aggregate properties 
of the level determine the interactions between levels and not the properties of the 
individual elements. 

(3) Regularities in the interactions between levels may themselves be classified 
and coded taking advantage of redundancy in complex hierarchical structures to obtain 
greater simplicity in explanation. Thus, for example, the trajectory of a system over 
an entire period of time may be simply described in terms of the differential law generating 
that trajectory at individual instants of time. 

Advantages of hierarchies: 

(1) They provide a meaningful integrations of systems. The integrated behavior 
or function of a hierarchical organization accounts for the fact that complicated changes 
in a large system can result in a single component. It is the opposite of what we generally 
expect. 

(2) They use aggregates of element in the form of levels to accomplish tasks. 

(3) Greater detail occurs down the hierarchy levels; greater depth in understanding 
its purpose occurs up the hierarchy levels. From the upper level the constraints of the 
hierarchy are taken for granted and the question is, “How could the constraints arise I” 

(4) Hierarchies are efficient and will evolve in natural systems much more rapidly 
than nonhierarchic systems having the same number of elements. This is demonstrated 
below. 

(5) Hierarchies are reliable and flexible. Local perturbation does not perturb the 
entire hierarchy. The overall purpose of the hierarchy is divided among the levels whereby 
each solves a partial problem and the totality meets the overall purpose. The units on 
the higher level are not concerned with the overall purpose but with specific goals of 
that system should be attempted not in terms of the overall goal but in terms of specific 
goals of each level. 

5. FORMAL HIERARCHIES 

The laws characterizing different levels of a hierarchy are generally different. The levels 
differ in both structure and function. The proper functioning of a higher level depends 
on the proper functioning of the lower levels. The basic problem with a hierarchy is 
to seek understanding at the highest levels from interactions of the various levels of the 
hierarchy rather than directly from elements of the levels. At this state of development 
of the theory the choice of levels in a hierarchy generally depends on the knowledge and 
interpretation of the observer. Let us note in passing that, for example, the optics eigen- 
vectors are estimates of the inverse square natural law. The approach will represent laws 
characterizing problems of greater complexity. 

4W15/3-4 
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DEFINITION 4. An ordered set is any set S with a binary relation < which satisfies 
the reflexive, antisymmetric, and transitive laws: 

Reflexive: For all x, x < x; 

Antisymmetric: Ifx<yandy<x,thenx=y; 

Transitive: Ifx<yandy<z,thenx,(x. 

For any relation x < y (read, y includes x) of this type, we may define x < y to mean 
that x < y and x # y. y is said to cover (dominate) x if x < y and if x < t < y is possible 
for no t. 

Ordered sets with a finite number of elements can be conveniently represented by 
directed graphs. Each element of the system is represented by a vertex so that an arc is 
directed from a to b if b < a. 

DEFINITION 5. A simply or totally ordered set (also called a chain) is an ordered set 
with the additional property that if x, y E S then either x < y or y < x. 

DEFINITION 6. A subset E of an ordered set S is said to be bounded from above if 
there is an element s E S such that x < s for every x E E. The elements is called an upper 

bound of E. We say E has a supremum or least upper bound in S if E has upper bounds 
and if the set of upper bounds U has an element ul such that u1 < u for all u E U. The 
element ui is unique and is called the supremum of E in S. The symbol sup is used 
to represent a supremum. (For finite sets the largest elements and the upper bounds are 
the same.) 

Similar definitions may be given for sets bounded from below, a lower bound and 
inf;mum. The symbol inf is used. 

There are many ways of defining a hierarchy. The one which suits our needs best here 
is the following: 

We use the notation x- = ( y j x covers y} and xf = {y 1 y covers x}, 
for any element x in an ordered set. 

DEFINITION 7. Let H be a finite partially ordered set with largest element b. 
H is a hierarchy if it satisfies the conditions 

(a) There is a partition of H into sets L, , k = I,..., h, where L, = {b}. 

(b) x EL, implies x- C Lk+l , k = I,..., h - 1. 

(c) x ELM implies x+CL,-, , k = 2 ,..., h. 

For each x E H, there is a suitable weighting function (whose nature depends on the 
phenomenon being hierarchically structured): 

w,: x- --+ [0, l] such that c w=(y) = 1. 
l/E%- 

The sets Li are the lenels of the hierarchy, and the function w, is the priority function 
of the elements in one level with respect to the objective x. We observe that even if 
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x- # L, (for some level Lk), w, may be defined for all of L, by setting it equal to zero 
for all elements in L, not in x-. 

The weighting function, we feel, is a significant contribution toward the application 
of hierarchy theory. 

DEFINITION 8. A hierarchy is complete if, for all x ELM xf = L,-, , for K = 2,..., h. 
We can state the central question: 

BASIC PROBLEM. Given any element x EL, , and subset S CL, (a < /3), how do 
we define a function wZSs: S + [0, I] which reflects the properties of the priority functions 
w, on the IevelsL, , k = a,..., ,L3 - 1. Specifically, what is the function w~,~,: Lh-+ [0, I]. 

In less technical terms, this can be paraphrased thus: 
Given a social (or economic) system with a major objective 6, and the set L, of basic 

activities such that the system can be modeled as a hierarchy with largest element b and 
lowest level Lh , what are the priorities of the elements of Lh with respect to b ? 

From the standpoint of optimization, allocating a resource among the elements any 
interdependence must also be considered. Analytically, interdependence may take the 
form of input-output relations such as, for example, the interflow of products between 
industries. A high-priority industry may depend on the flow of matrial from a low-priority 
industry. In an optimization framework, the priority of the elements enables one to 
define the objective function to be maximized, and other hierarchies supply information 
regarding constraints, e.g., input-output relations. An application of this exists. 

We now present our method for solving the Basic Problem. Assume that 

and that X = {x1 ,..., x~~+~} ~&+r. (Observe that according to the remark following 
Definition 7, we may assume that Y = L, , X = L,,, . Also assume that there is an 
element z EL,-, , such that y C Z-. We then consider the priority functions 

wz* - Y---f [O, l] and wy: X + [0, 11, j = l,..., ?zk . 

We construct the “priority function of the elements in X with respect to a,” denoted w, 
w: X-+ [0, 11, by 

WC%> = 2 w,j(xi> Wz(.%h i = l,..., ?zk+l . 
j=l 

It is obvious that this is no more than the process of weighting the influence of the 
element yj on the priority of xi by multiplying it with the importance of yi with respect 
to z. 

The algorithms involved are simplified if one combines the wy,(xi) into a matrix B 
by setting bij = wy9(xJ. If, further, we set Wi = w(xJ and Wj’ = w,( yi), then the above 
formula becomes 

Wi = 2 bi.Wi’, 
j=l 

i = I,..., ?2)(+1 . 
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Thus, we may speak of the priority vector W and, indeed, of the priority matrix B of 
the (K + 1)st level; this gives the final formulation 

W=BW’. 

The foregoing may be summarized in a principle. 

Principle of hierarchical composition. Given two finite sets S and T, let S be a set of 
properties and let T be a set of objects which have the properties as characteristics. Assume 
that a numerical weight, priority, or index of relative importance, zuj > 0, j = I,..., n, 
is associated with each sj E S, such that Cy=, wj = 1. Let wij > 0, i = I,..., m, with 
Cyl, wij = 1, be weights associated with ti E T, i = l,..., m, relative to s, . Then the 
convex combination of wij , .i = I,..., n, 

zl wijwi P i = I,..., m, 

gives the numerical priority or relative importance of ti with respect to S. Note that the 
principle generalizes to a chain of sets. An axiomatization of the principle of hierarchical 
composition would be useful. 

The following is a first step toward validating the above principle, as it shows that the 
ordinal preferences are preserved under composition. 

DEFINITION 9. Suppose that for each subgoal or activity Cj in L, there is an ordinal 
scale oj over the activities C, (a = l,..., ~+i) in Lkfl . Define a partial order over L,,, by: 
C, > C, if and only if for i = I,..., nk , omj 3 osj . 

It is easy to prove: 

THEOREM 10. Let (wli ,,.., w~,+,~) be the eigenvector for L,,, with respect to I$, and 
suppose it preserves the order of the oEj . Let WI ,..., Wn,+, be the (composite) priority vector 
for L?L+1 . Then C, > C, implies W, 3 We . 

Thus hierarchical composition preserves ordinal preference. 
The following is easy to prove: 

THEOREM 11. Let H be a complete hierarchy with largest element b and h levels. Let B, 
be the priority matrix of the kth level, k = 2,..., h. If W is the priority vector of the pth 
level with respect to some element z in the ( p - 1)st level, then the priority vector W of 
the 4th level ( p < q) with respect to z is given by 

W = B,B,-, *.. B,+lW’, 

Thus, the priority vector of the lowest level with respect to the element b is given by: 

W = B,B,-, ..a B,W’. 

If L, has a single element, as usual, W’ is just a scalar; if more, a vector. 
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The following observation holds for a complete hierarchy but it is also useful in 
general. The priority of an element in a level is the sum of its priorities in each of the 
comparison subsets to which it belongs; each weighted by the fraction of elements of 
the level which belong to that subset and by the priority of that subset. The resulting 
set of priorities of the elements in the level is then normalized by dividing by its sum. 
The priority of a subset in a level is equal to the priority of the dominating element 
in the next level. 

The reader will have noted that our earlier definition of a hierarchy is more general 
than we needed in a complete hierarchy. We have made some observations here on general 
hierarchies but we have used extensively in practice the general definition given. Any of 
the following applications would require a longer discussion than given here and several 
of them are in the process of publication. 

Examples 

1. School Selection 

Three high schools, A, B, C, were analyzed according to their desirability from the 
standpoint of a candidate. Six characteristics were selected for the comparison. They are: 
learning, friends, school life, vocational training, college preparation, and music classes. 
The pairwise judgment matrices (See Table 10 and the matrices below) were filled by the 
author’s teen-age son and wife in a substantial debate. 

TABLE 10 

Comparison of Characteristics with Respect to Overall Satisfaction with School 

Learning Friends 
School Vocational College Music 

life training preparation classes 

Learning 1 4 3 1 3 4 

Friends a 1 7 3 1 5 1 

School life 8 
+ 1 -+ .; Q 

Vocational training 1 4 5 1 1 i 
College preparation 9 5 5 1 1 3 

Music classes ii 1 6 3 Q 1 

Comparison of Schools with Respect to the Six Characteristics 

Learning Friends 

A B C ABC 
A lQ$ A 1 1 1 
B 3 1 3 B 1 1 1 
C2&1 c 1 1 1 
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School life Vocational training 

-iA B C IA B C 
A!1 5 1 All 9 7 
B + 1 i B ‘A 1 .; 
C 1 5 1 c1-i 5 1 

College preparation Music classes 

ABC :A B C 
A1&1 A 164 

B 2 1 2 B ; 1 Q 
c 1 4 1 Ci$ 3 1 

The eigenvector of the matrix in Table 10 given by: 

(0.32, 0.14, 0.03, 0.13, 0.24, 0.14) 

and its corresponding eigenvalue is h,, = 7.49, which is far from the consistent value 6. 
No revision of the matrix was made. Normally such inconsistency would indicate that 
we should reconsider the arrangements. 

The eigenvalues and eigenvectors of the other six matrices are given in Table 11. 

TABLE 11 

Eigenvalues and Eigenvectors of the Comparison Matrices of the 
Schools with Respect to the Characteristics 

h max = 3.05 
Learning 

0.16 

0.59 

0.25 

A,,, = 3 
Friends 

0.33 

0.33 

0.33 

h mlLx = 3 x max = 3.21 hmax = 3 Xmax = 3.05 
School Vocational College Music 

life training preparation classes 
-. 

0.45 0.77 0.25 0.69 

0.09 0.05 0.50 0.09 

0.46 0.17 0.25 0.22 

To obtain the overall ranking of the schools, we multiply the last matrix on the right by 
the transpose of the vector of weights of the characteristics. This yields: 

A = 0.37, B = 0.38, C = 0.25. 

The individual want to school A because it had almost the same rank as school B; yet 
school B was a private school charging close to $1600 a year and school A was free. 
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This is an example where we were able to bring in a lower-priority item, e.g., the cost 
of the school, to add to the argument that A is favored by the candidate. The actual 
hierarchy is shown in Fig. 4. 

SATISFACTION WITH SCHOOL 

FIG. 4. School satisfaction hieraichy. 

2. Psychotherapy 

The hierarchical method of prioritization may be used to provide insight into psycho- 
logical problem areas in the following manner: Consider an individual’s overall well-being 
as the single top level entry in a hierarchy. Conceivably this level is primarily affected 
by childhood, adolescent, and adult experiences. Factors in growth and maturity which 
impinge upon well-being may be the influences of the father and the mother separately 
as well as their influences together as parents, the socioeconomic background; sibling 
relationships, one’s peer group, schooling, religious status, and so on. 

The factors above, which comprise the second level in our hierarchy, are further 
affected by criteria pertinent to each. For example, the influence of the father may be 
broken down to include his temperament, strictness, care, and affection. Sibling relation- 
ships can be further characterized by the number, age differential, and sexes of siblings; 
peer pressure and role modeling provide a still clearer picture of the effects of friends, 
schooling, and teachers. 

As an alternative framework of description for the second level, we might include 
self-respect, security, adaptability to new people and new circumstances, and so on, 
influencing or as influenced by the elements above. 

A more complete setting for a psychological history might include several hundreds of 
elements at each level, chosen by trained individuals and placed in such a way as to 
derive the maximum understanding of the subject in question. 

Here we consider a highly restricted form of the above, where the individual in question 
feels that his self-confidence has been severely undermined and his social adjustments 
have been impaired by a restrictive situation during childhood. He is questioned about 
his childhood experiences only and is asked to relate the following elements pairwise 
on each level: 

Level I Overall well-being (O.W.). 

Level II Self-respect, sense of security, ability 
to adapt to others (R, S, A). 
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Level III Visible affection shown for subject (V), 
Ideas of strictness, ethics (E), 
Actual disciplining of child (D), 
Emphasis on personal adjustment with 
others (0). 

Level IV Influence of mother, father, both (M, F, B), 

The replies in the matrix form were as follows, supplied by MS X, a student: 

O.W. 
R S A 

R 164 
S g 1 3 
A *+I 

R S 

VEDO V E D 0 
v 1 6 6 3 V 1 6 6 3 
E 4 1 4 3 E * 1 4 3 
D *$l$ D&al+ 
0 3 $ 2 1 0 8 6 2 1 

A 
VEDO -- 

v1;+1 
E 5 1 4 8 
D 3 ) 1 $ 
0 1 5 4 1 

V E 
M F B M F B 

M 194 M 1 1 1 
F + 1 8 F 1 1 1 
B 2 -; 1 B 1 1 1 

D 0 
M F B M F B 

M 196 M 155 

F * 1 * F 5 1 !I 
B $ 4 1 B & 3 1 

The eigenvector of the first matrix, a, is given by: 

0, w 

R 0.701 

s 0.193 
A 0.106 
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The matrix, b, of eigenvectors of the second row of matrices is given by: 

R S A 

V 0.604 0.604 0.127 

E 0.213 0.213 0.281 

D 0.064 0.064 0.120 
0 0.119 0.119 0.463 

The matrix, c, of eigenvalues of the third row of matrices is given by: 

V E D 0 

M 0.721 0.333 0.713 0.701 

F 0.210 0.333 0.061 0.097 

B 0.069 0.333 0.176 0.202 

The final composite vector of influence on well-being obtained from the product cba 
is given by: 

Mother = 0.635, 

Father = 0.209, 

Both = 0.156. 

3. Choosing a Job. 

A student who had just received his Ph. D. was interviewed for three jobs. His criteria 
selecting the jobs and their pairwise comparison matrix are given in Table 12. The 
pairwise comparison matrices of the jobs with respect to each criterion are: 

Research Growth 

A B C ABC 

Ali& A l)g 
B 4 1 3 B 4 1 4 
c 2il C521 

Benefits Colleagues 

ABC ABC 
A 1 3 f Ali5 
B $ 1 1 B 3 1 7 
c 3 I 1 c *+1 

Location Reputation 

A B C A B C 
A 1 1 7 A 179 
B 1 1 7 B + 1 5 
cl+ Q 1 c 361 
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TABLE 12 

Overall Satisfaction with Job 

Research Growth Benefits Colleagues Location Reputation 

Research 1 1 1 4 1 1 f 

Growth 1 1 2 4 I 7. 

Benefits 1 g 1 5 3 7 i 

Colleagues -i -1 .k 1 4 1 3 

Location 1 1 4 3 1 1 

Reputation 2 2 2 3 1 I 

The eigenvalue of the matrix of Table 12 is h,,, = 6.35 and the corresponding 
eigenvector is 

The eigenvalues and eigenvectors of the remaining matrices are given in Table 13. 
The composite vector for the jobs is given by 

A = 0.40, B = 0.34, C = 0.26. 

The differences were sufficiently large for the cadidate to accept the offer of job A. 

TABLE 13 

Eigenvalues and Eigenvectors of the Comparison Matrices of the 
Jobs with Respect to the Criteria 

h m&x = 3.02 A,,, = 3.02 A,, = 3.56 Am,, = 3.05 A,, = 3 A,,, = 3.21 
Research Growth Benefits Colleagues Location Reputation 

0.14 0.10 0.32 0.28 0.47 0.77 

0.63 0.33 0.22 0.65 0.47 0.17 

0.24 0.57 0.46 0.07 0.07 0.05 

4. Selecting a Plan for Vacation 

With a view to spending a week for vacation, four places were evaluated in terms of 
the following criteria: 

F, : Cost of the trip from Philadelphia 

F, : Sight-seeing opportunities 

F3 : Entertainment (doing things) 

F, : Way of travel 

F . 5' Eating places 
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The places considered were: 

S: Short trips (i.e., New York, Washington, Atlantic City, New Hope, etc.) 
Q: Quebec 
D: Denver 
C: California. 

The comparison matrix of the criteria with respect to overall satisfaction with a vacation 
plan is given in Table 14. 

TABLE 14 

Comparison Matrix of Criteria for Vacationa 

__--.- ~- 

cost 
Sightseeing 
Entertainment 
Way of travel 
Eating places 

cost 

1 
5 
5 
1 
3 

Sight- Entertain- Way of Eating Eigen- 
seeing ment travel places vector 

k 5 1 g 0.09 
1 6 -$ 1 0.13 
5 1 .$ 1 0.23 
5 5 1 5 0.43 
1 1 -; 1 0.13 

a h,,,,x = 6.78. 

The comparison matrices of vacation sites with respect to the criteria are: 

cost Sightseeing 
1 S Q D C Eigenvector S Q D C Eigenvector -8 I 

SIl 3 7 9 0.58 s l*Q$ 0.06 
Q’+ 1 6 7 0.30 Q 5 1 2 4 0.45 
D +Q 13 0.08 D 64 16 0.38 
c $34 1 0.04 c 4$&l 0.12 

x max = 4.21 x max = 4.34 

Entertainment Way of travel 
1 S Q D C Eigenvector S Q D C Eigenvector 

(s,~: I : : 3 t2 0.36 0.06 a%143 s 14&g 0.21 0.19 
D\+ 1 1 + 0.06 D 42 13 0.41 
cl2 7 7 1 0.52 c 34+1 0.18 

x max = 4.06 h m&x = 5.38 
Eating places 

S Q D C Eigenvector 
S 1 1 7 4 0.43 
Q 1 1 6 3 0.38 
D 3; 1 t 0.05 
cd*41 0.14 

h max = 4.08 
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The ranking of the four places obtained by the prioritization is: 

S = 0.29, 

Q = 0.23, 

D = 0.25, 

C = 0.24. 

This shows that the four are almost equally preferred, with short-trip places having a 
slight edge over the others. 

5. Confrict and Planning Applications 

In an interesting application to conflict analysis, the theory has been used to construct 
a hierarchy whose levels represent the actors who influence or control the outcome 
of the conflict, the objectives of the actors, their policies, their strategies, and the set 
of plausible outcomes which can result from their actions. The analysis leads to weights 
or priorities for the outcomes. The method offers ground for approaching the parties 
on what may work best when all their combined interests are taken into consideration 
or to show them where to modify their positions to obtain a jointly more desirable 
outcome. 

An outcome in a planning problem is often referred to as a scenario. To ensure taking 
into account the widest “plausible” set of possible outcomes (or scenarios) it is desirable 
to adopt for each actor an outcome which he would like to pursue by himself. The set 
of outcomes is then hierarchically weighted by the weights of the actors composed with 
the weights of their objectives and finally with those of their strategies (Saaty and Rogers, 
1976). A composite outcome, the resultant of all the influences on the set of outcomes, 
is obtained. This is the likely or composite future. The likely future is characterized in 
detail by a set of state variables. The values of these variables are calibrated by weighting 
the corresponding values of the variables for each individual future considered. 
These are usually determined on a difference scale according to the strength of differences 
of each variable from its value in the present outcome taken as the zero reference point. 
The present 1s assumed to be the best-known outcome with which other outcomes 
may be compared. The purpose of such an analysis is to examine the attitudes of the 
actors about the future within a hierarchical framework which they can help define and 
to offer them an opportunity to bargain and change their position, hopefully to obtain 
a more favorable outcome (Alexander and Saaty, 1977). 

6. DECOMPOSITION AND AGGREGATION OR CLUSTERING 

There are essentially two fundamental ways in which the idea of a hierarchy can be 
used. 

The first is by now clear: it has to do with modeling the real world hierarchically. 
The second is probably even more fundamental than the first and points to the real 

power of hierarchies in nature. It is to break things down into large groupings or clusters 
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and then break each of these into smaller clusters and so on. The object would then be 
to obtain the priorities of all the elements by means of clustering. This is by far a more 
efficient process than treating all the elements together. Thus, it is immaterial whether 
we think of hierarchies as intrinsic in nature, as some have maintained, or whether 
we simply use them because of our limited capacity to process information. In either 
case, they are a very efficient way of looking at complex problems. 

To decompose a hierarchy into clusters, one must first decide on which elements 
to group together in each cluster. This is done according to the proximity or similarity 
of the elements with respect to the function they perform or property they share and 
regarding which we need to know the priority of these elements. One must then conduct 
comparisons on the clusters and on the subclusters and then recompose the clusters 
to obtain a true reflection of the overall priorities. If this process works, the result after 
the decomposition should be the same as the result if there were no decomposition. 
Let us illustrate with the example of distances fromPhiladelphia of the six cities mentioned 
earlier. 

A Distance Hierarchy 

We now structure the example of distances between cities into a hierarchy. 
If we group the cities into clusters according near-equivalent distances from Phila- 

delphia, we have three classes compared in the following matrix. 

Chicago London Cairo 
Montreal San Francis0 Tokyo Eigenvector 

Chicago 
Montreal 1 3 +i 0.056 

London 
San Francisco 7 1 t 0.26 

Cairo 
Tokyo 

9 4 1 0.68 

If we now compare the cities in each cluster separately according to their relative 
distances from Philadelphia, we have, on using for the 2 by 2 case the scale 1 + c: 

Chicago Montreal Eigenvector 
Chicago 1 2 0.67 
Montreal Q 1 0.33 

Cairo Tokyo Eigenvector 
Cairo 1 l/1.5 0.4 
Tokyo I 1.5 1 0.6 

San Francisco London Eigenvector 
San Francisco 1 l/1.3 0.43 
London 1.3 1 0.57 
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Now we multiply the first eigenvector by 0.056, the second by 0.26, and the third 
by 0.68 to obtain the overall relative distance vector: 

Cairo Tokyo Chicago San Francis0 London Montreal 

(0.27 0.41 0.037 0.11 0.15 0.019) 

which is a good estimate of the actual relative distance vector 

(0.278 0.361 0.032 0.132 0.177 0.019) 

Let us assume that we have a set of n elements. If  we wish to compare the elements 
in pairs to obtain a ratio scale ranking by solving the eigenvalue problem, (n” - n)/2 
judgments would be necessary. Suppose now that 7 is the maximum number of elements 
which can be compared with any reasonable (psychological) assurance of consistency. 
Then n must be first decomposed into equivalence classes of seven clusters or subsets, 
each of these decomposed in turn to seven new clusters and so on down generating levels 

of a hierarchy until we obtain a final decomposition each of whose sets has no more than 
seven of the orginal elements. Let (x} denote the smallest integer greater than or equal 
to x. We have: 

THEOREM 12. The maximum number of comparisons obtained from the decomposition 
of a set of n > 1 elements into a hierarchy of clusters (under the assumption that no more 
than seven elements are compared simultaneously), is bounded by (7/2)(7(10gn110g7) - I) and 
this bound is sharp. 

Proof. We have the following for the number of comparisons in each level where we 

must have in the hth or last level at most seven elements in each cluster. 

1. 0 

2. (72 - 7)/Z 

3. 7 x (72 - 7)/2 

k. 7h-2 x (72 - 7)/2, where 7h-2 x 7 = n, h = (log n/log 7) + 1, h > 2. 

The sum of these comparisons is 

21 x (7h-r - 1)/(7 - 1) = (7/2)(7(loan~rog’l - 1). 

To show that the bound is sharp it is sufficient to put n = 7”. 

Remark. It looks as if the Saint Ives conundrum finds its solution in hierarchies. 
The efficiency of a hierarchy may be defined to be the ratio of the number of direct 

pairwise comparisons required for the entire set of n elements involved in the hierarchy, 
as compared with the number of pairwise comparisons resulting from clustering as 
described above. 
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THEOREM 13. The &S&my of a hierarchy is of the order of n/7. 

Proof. To prove the theorem we must compare 

(9 - n)/2 with (7/2)(7m~lh-7~ - 1). 

Let n = 7m+e, 0 < c < 1. Then we clearly have 

727lME - 7mn+c/7 * (7” - 1) > 7m+c/7 = n/7. 

Thus n/7 is equal to the efficiency. 
One might naturally ask why we do not use 2 in place of 7 for even greater efficiency. 

We note that in using a hierarchy we seek both consistency and good correspondence 
to reality. The former is greater the smaller the size of each matrix; the latter is greater 
the larger the size of the matrix due to the use of redundant information. Thus we have 
a trade off. Actually, we have seen that using the consistency index C the number 7 is 
a good practical bound on n, a last outpost, as far as consistency is concerned. 

Remark. The exponential efficiency is log, n or, in general, if we replace 7 by s 
we have log, n. 

Suppose we have a set of 98 elements to which we want to assign priority. We decompose 
the problem into seven sets each having on the average 14 elements. Now we cannot 
compare 14 elements so we decompose each of these sets into two sets each having no 
more than 7 elements. We then compare the elements among themselves. 

To look at the efficiency of this process closely we note that if it were possible to compare 
98 elements among themselves, we would require ((9Q2 - 98)/2 = 4753 comparisons. 
On the other hand, if we divide them into seven clusters of 14 elements each, and then 
do pairwise comparisons of the seven clusters, we need (72 - 7)/2 = 21 comparisons. 
Each cluster can now be divided into two clusters each with seven elements. Comparing 
two clusters falling under each of the 14-element clusters requires one comparison 
but there are seven of these, hence, we require seven comparisons on this level; then 
then we need 14 x 21 = 294 comparisons on the lowest level. The total number of 
comparisons in this hierarchical decomposition is 21 + 7 + 294 = 322 as compared 
with 4753 comparisons without clustering. Indeed the theorem is satisfied since 322 < 
475317. 

Clustering a complex problem into hierarchical form has two advantages: 

(1) Great efficiency in making pairwise comparisons, 

(2) Greater consistency under the assumption of a limited capacity of the mind 
to compare more than 7 f 2 elements simultaneously. 

The efficiency of a hierarchy has been illustrated by Simon (1962) with an example 
of two men assembing watches, one by constructing modular or component parts from 
elementary parts and using these to construct higher-order parts and so on, and the 
other by assembling the entire watch piece by piece from beginning to end. If the first 
man is interrupted, he only has to start reassembling a small module but if the second 
man is interrupted, he has to start reassembling the watch from the beginning. If the 
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watch has 1000 components and the components at each level have 10 parts, the first 
man will, of course, have to make the components and then from these make subassemblies 
in a total of Ill operations. If p is the probability of an interruption while a part is being 
added to an incomplete assembly, then the probability that the first man completes a piece 
without interruption is (1 - p)‘” and that for the second is (1 - p)looo. For the first man, 
an interruption would cost the time required to assemble 5 parts. The cost to the second 
man will, on the average, be the time needed to assemble l/p parts which is approximately 
the expected number of parts without interruption. If p = .Ol [a chance in a hundred 
that either man would be interrupted in adding any 1 part), the cost to the first man 
is 5 and to the second man 100. The first man will assemble 111 components while the 
second would make just 1. However, the first man will complete an assembly in 
(1 - O.O1)-lrJ = IO/9 attempts whereas the second man will complete an assembly in 
(1 - O.Ol)-J~ = (l/44) x 10s attempts. Thus the ratio of the efficiency of the first 
man to that of the second man is given by: 

lOO/o.991000 
111{[(1~0.9910) - 115 + IO} m 2000* 

In man-made systems, the task of managing a complex enterprise is, in general, 
considerably simplified when it is broken down into subsystems or levels that are in- 
dividually more tractable, i.e., with a manager having a limited span of management. 
The steps of solving a large-scale problem are more simply and efficiently accomplished 
when they are modularized, e.g., by taking n sets of m variables each, than when mn 
variables are taken simultaneously. 

7. COMMENTS ON RELATION TO OTHER WORK 

In his summary paper, Shepard (1972) indicates that reasearch on dominance matrices 
and corresponding measurement has not been as extensive as research on the other 
three types: proximity, profile, and conjoint. We are essentially interested in dominance 
matrices and their use in deriving ratio scales and, furthermore, in the measurement 
of hierarchical impacts. Let us compare the method with work done by others. We hope 
that we may be forgiven if our comparison is not as complete as some may like to see. 
As it is, the core of the ideas was improvised and grew completely out of applications. 
Then it had to be integrated into the main stream of the literature. 

Thurstone’s model (1927) of comparative judgment demands pairwise comparison 
of the objects, but only to the extent that one is more preferred to or greater than another. 
He recovers information over the stimuli by impossing assumptions of normality on 
the judgmental process. Under additional assumptions on the parameters, e.g., equal 
variances or zero covariances, he recovers various “metric” information on the stimuli. 
A number of restrictions are associated with Thurstone’s approach. For example, 
Guilford (1928) recommends limiting the range of probabilities that one stimulus is 
judged to be more than another. 
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Torgerson (1958) has systematized and extended Thurstone’s method for scaling; 
in particular, concentrating on the case in which covariance terms are constant, correlation 
terms equal, and distributions homoscedastic, i.e., they have equal variances. 

Lute and Suppes (1964) and Suppes and Zinnes (1963) have proposed what Coombs 
(1964) calls the Bradley-Terry-Lute (BTL) model using the logistic curve which is a log 
transform of the probability distribution. Although this is different from assuming 
normality, in practice it is difficult to distinguish between the BTL model and the case 
in Thurstone’s work where he assumes normal distributions and equal variances. The 
BTL model is more rigorously grounded in a theory of choice behavior. Coombs discusses 
the essential distinction between the two models. 

We can contrast our assumptions with psychometric tradition. We do not begin with 
the supposition that ratio judgments are independent probabilistic processes. Instead, 
we investigate the consequence of changes in the judgments through perturbations 
on the entire set of judgments. This type of approach leads to the criterion of consistency. 
Thus, obtaining solutions in our method is not a statistical procedure. 

Briefly, many psychometric methods perform aggregation of judgments in the course 
of solving for a scale. We assume that if there is aggregation of judgments, it occurs prior 
to the ratio estimate between two stimuli. Therefore, our solution procedure is not 
concerned with assumptions of distributions of judgments. However, if we want to 
compare any solution with the criterion of consistency, we appeal to statistical reasoning 
and perturbations over the entire matrix of judgments. 

Our use of metric information in the matrix of subjects’ judgments generates strong 
parallels with principal component analysis, except that the data give dominance rather 
than similarity or covariance information. In principal component analysis h,, is 
emphasized, but one also solves for all the X’s. However, the results must be interpreted 
differently (Hotelling, 1933). 

In our analysis the nature of the stimuli and the task presented to subjects are also 
similar to “psychophysical” scaling, as typified by Stevens and Galanter (1964) and 
recently used widely in many attempts to construct composite measures of political 
variables including “national power.” Stevens’ technique imposes consistency by asking 
the subjects to compare simultaneously each stimulus with all others, producing only 
one row of our matrix. This means the hypothesis of unidimensionality cannot be tested 
directly. If Stevens’ method is used, one should take care that the judgments over stimuli 
are known to be consistent or nearly so. In addition, there is no way of relating one scale 
to another as we do with the hierarchy. 

Krantz (1972) has axiomatized alternative processes relating stimuli to judgments and 
has derived existence theorems for ratio scales. Comparable axiomatization has not been 
extended to hierarchies of ratio scales. 

Some people have approached problems of scaling as if the cognitive space of stimuli 
were inherently multidimensional, but we choose instead to decompose this multi- 
‘dimensional structure hierarchically in order to establish a quantitative as well.as qualita- 
tive relation among dimensions. The individual dimensions in multidimensional scaling 
solutions functionally resemble individual eigenvectors on any one level of our hierarchy. 

The formal problem of constructing a scale as the normalized eigenvector w in the 

4W15/3-5 



278 THOMAS L. SAATY 

equation Aw = hw, for h a maximum, is similar to extracting the first principal compo- 
nent. When subjects are asked to fill the cells of only one row or one column and the 
other cells are computed from these (to insure “perfect consistency”) the first eigenvalue, 
n, represents lOOo/O of the variance in the matrix. If, however, “perfect consistency” 
applies to the data except that a normally distributed random component is added to each 
cell of the matrix, then one’s theory of data would lead to principal factor analysis, 
and a “single-factor” solution would result. Thus, the imposition of perfect consistency by 
the experimenter produces an uninteresting result of exact scalability, which was assured 
by the experimental design of single comparisons. In fact, one can see that if the subjects 
fill only one row or column of the matrix and if the subjects’ task is to generate ratios 
between pairs of stimuli, then the procedure is formally equivalent to having the subjects 
locate each stimulus along a continuum with a natural zero at one end: this is the “direct- 
intensity” technique of psychophysical scaling. 

There is no simple relationship of the eigenvalue solution to least-squares solutions, 
although there have been papers (for example, by Eckart and Young (1936). Keller (1962), 
and Johnson (1963)) concerned with approximating a matrix of data by a matrix of lower 
rank, minimizing the sum of the square of the differences. In general, the two solutions 
are the same when we have consistency. A widely accepted criterion for comparison 
is not known. Thus, it is not clear which is superior. Iterating the eigenvalue procedure 
helps us approach consistency, which is our preferred criterion. 

Tucker (1958) presents a method for the “determination of parameters of a functional 
relation by factor analysis.” He states, however, that “the rotation of axes problem 
remains unsolved.. . ,” that is, the factor analysis determines the parameters only within 
a linear transformation. Cliff (1975) suggests methods for the determination of such 
transformations where a priori theoretical analysis or observable quantities provide 
a criterion toward which to rotate the arbitrary factor solution. 

The hierarchical composition is an inductive generalization of the following idea. 
We are given weights of elements in one level. We generate a matrix of column eigen- 
vectors of the elements in the level immediately below this level with respect to each 
element in this level. Then we use the vector of (weights of) elements in this level to 
weight the corresponding column eigenvectors. Multiplying the matrix of eigenvectors 
with the column vector of weights gives the composite vector of weights of the lower-level 
elements. 

Because the matrix of eigenvectors is not an orthogonal transformation, in general the 
result cannot be interpreted as a rotation. In fact, we are multiplying a vector in the unit 
n-simplex by a stochastic matrix. The result is another vector in the unit simplex. 
Algebraists have often pointed to a distinction between problems whose algebra has a 
structura1 geometric interpretation and those in which algebra serves as a convenient 
method for doing calculations. Statistical methods have a convenient geometric inter- 
pretation. Perturbation methods frequently may not. 

In the works of Hammond and Summers (1965) concern is expressed regarding the 
performance of subjects in situations involving both linear and nonlinear relations among 
stimuli before concluding that the process of inductive inference is primarily linear. 
In our model, subjects’ responses to linear and nonlinear cues seem to be adequately 
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captured by the pair-wise scaling method described here, by using the hierarchical 
decomposition approach in order to aggregate elements which fall into comparability 
classes according to the possible range of the scale used for the comparison. 

Note that our solution of the information integration problem discussed by Anderson 
(1974) is approached through an eigenvalue formulation which has a linear structure. 
However, the scale defined by the eigenvector itself is a highly nonlinear function of the 
data. The process by means of which the eigenvector is generated involves complex 
addition, multiplication, and averaging. To perceive this complexity one may examine 
the eigenvector as a limiting solution of the normalized row sums of powers of the 
matrix. 

Anderson (1974) also makes a strong point that validation of a response scale ought to 
satisfy a criterion imposed by the algebraic judgment model. Such a criterion in our case 
turns out to be consistency. 

Finally, it may be useful to mention briefly a graph-theoretic approach to consistency. 
A directed graph on n vertices which is complete (i.e., every pair of vertices is connected 
by a directed arc) is called a tournament. It can be used to represent dominance pairwise 
comparisons among n objects. Its cycles would then represent intransitivity. For example, 
every three vertices define a triangle, but not all triangles form 3-cycles. The number of 
cycles of given length is used to define an intransitivity index for that order, e.g., between 
triples or quadruples. Inconsistency is then defined (see Marshall (1971)) in terms of 
the ratio of the number of three or four or more cycles in a given graph to the maximum 

number of cycles of that order. For 3-cycles the maximum number is (n3 - n)/24 for n 
odd, and (na - 4n)/24 for n even. For 4-cycles it is (n3 - n)(n - 3)/48 for n odd, and 
(n3 - 4n)(n - 3)/48 f  or n even. These results have not been generalized to k-cycles. 
However, the average number of K-cycles for a random orientation of the arcs of a complete 
graph is (k .- I)! (i)(i)“. As yet we have found no relationship between this definition 
of inconsistency and our eigenvalue-related definition. It is not likely that there will be. 
The above 3-cycle result is due to M. G. Kendall together with its statistical implications. 
It is nicely discussed in standard statistical references (see, for example, Moroney (1968)). 

8. CONCLUSIONS 

There are a number of possible extensions of the use of the ideas discussed here that 
are being presently pursued. In a recent Ph. D. dissertation Peter Blair has applied the 
ideas to the design of an energy park using hierarchies together with input-output 
analysis. He used goal programming to ensure the real consistency of flows of materials 
to conform with the priority weights assigned them. In another dissertation R. Mariano 
used the ideas to structure problems for energy rationing. Three applications have been 
made recently. The first was to design a national transport plan for the Sudan, and the 
second used the approach of analyzing attitudes toward the growth of a large Mexican 
corporation by working with its planners. The third involved work with the U.S. Navy 
to help improve the management of one of its important units by interacting with the 
admiral in charge. 
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Applications to problems of risk are of particular interest to us at present in the analysis 
of “limits to growth” for the National Science Foundation. 

In conclusion, we have found modeling complex problems with hierarchies useful in 
stimulating participation and interaction among the people concerned. It seems to 
provide an opportunity for richer involvement of decision makers both in the formulation 
and in the quantitatively oriented solution of their problems. We feel that there is sub- 
stantial work yet to be done on the theory, but enough is known to make it useful even 

now. We recently extended the idea of consistency to hierarchies and their stabilities. 
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